Полезные статьи, радиосхемы, конструкции, разработки, рабочие и готовые к повторению

Схема источника напряжения на к142ен5, кр142ен5 и типовая схема включения

Описание

Микросхемы представляют собой мощные стабилизаторы напряжения с фиксированными выходными напряжениями положительной полярности 5 и 6 В и током нагрузки 2 и 3 А. Имеют встроенную защиту от короткого замыкания, защиту от перегрузок по току и от перегрева кристалла. Содержат 39 интегральных элементов. Корпус К142ЕН5(А - Г) типа 4116.4-2, масса не более 3г, КР142ЕН5(А - Г)- типа КТ28-2, масса не более 2,5 г. Назначение выводов: 2 - выход; 8 - общий; 17 - вход.

Общие рекомендации по применению

Крепление ИМС осуществляется непосредственно к печатной плате или через переходные элементы методом распайки выводов корпуса на печатную плату. При этом радиатор крепится винтами:
к металлической теплоотводящей шине, закрепленной на печатной плате, - в случае использования дополнительного теплоотвода; к печатной плате - без использования дополнительного теплоотвода.
В качестве вывода ''общий" наряду с выводом 8 рекомендуется использовать корпус ИМС.
Разрешается производить монтаж 2 раза, демонтаж 1 раз. Допускается подача напряжения на выход ИМС до 8 В при отсутствии напряжения на входе. При включении ИМС на повышенные значения выходного напряжения (см. соответствующую схему включения) допускается увеличение входного напряжения до 20 В при условии, что разность напряжений между входом и выходом находится в пределах 2,5: 10 В и Ррас = Pрас,mах.

Схема кристалла К145ен5 купить кр145ен5

Схема кристалла К145ен5

Параметры микросхемы к142ен5

Параметры микросхемы кр142ен5

Купить к145ен5 в золотом корпусе, купить кр145ен5 в пластмассе

Тип корпусов микросхемы

Типовая схема включения ИМС К142ЕН5(А - Г), КР142ЕН5(А - Г)

Типовая схема включения ИМС К142ЕН5(А - Г), КР142ЕН5(А - Г)
Купить микросхему к142ен5 в керамике с желтыми выводами Au с позолотой
Схема включения ИМС К142ЕН5(А - Г), КР142ЕН5(А-Г) на повышенные значения выходного напряжения

Принципиальные схемы (рабочие схемы) включения микросхем к145ен5

Схема с подстройкой выходного напряжения

Купить к142ен5 в металлокерамике оптом

Для защиты микросхемы от повреждения в подобных случаях используют диоды. В устройстве, выполненном по схеме на рис. 1, диод VD1 защищает микросхему DA1 от разрядного тока конденсатора С2, а диод VD2 - от разрядного тока конденсатора С3 при замыкании на входе СН.

Выходное напряжение устройства U,<=Um<.Uct+ + IR2R2, где UBыхxCT - выходное напряжение микросхемы, 1R2 - ток через резистор R2.

Сопротивление резисторов R1 и R2 рассчитывают по формулам: R1 = U /IR2+In; R2=  Uвых-Uюх.ст/1К2, где In - ток потерь в микросхеме, равный 5... 10 мА. Для нормальной работы устройства ток IR2 должен быть, как минимум, вдвое больше тока Iп. Приняв 1R2=20 мА, в рассматриваемом случае (UBых=10 В, Uвыхст= = 5 В) получаем Rl=5/ (0,02 + +0,01) = 333 Ом, R2= (10- -5) /0,02=250 Ом. Поскольку выбор сопротивлений этих резисторов из стандартного ряда номиналов приводит к отклонению выходного напряжения от расчетного значения, резистор R2 рекомендуется выбирать подстроечным. Это позволит в определенных пределах регулировать выходное напряжение.

Мощность Ррас, рассеиваемая микросхемой при максимальной нагрузке.

Конденсатор С1 необходим только в том случае, если длина проводов, соединяющих СН с конденсатором фильтра выпрямителя, больше 100 мм; С2 сглаживает переходные процессы, и его рекомендуется устанавливать при наличии длинных соединительных проводов (печатных проводников) и в тех случаях, когда недопустимы броски напряжения и тока в цепи питания нагрузки. Что касается конденсатора С3, то он служит для дополнительного уменьшения пульсаций напряжения на выводе 8 микросхемы DA1.

Наиболее подходят для использования в стабилизаторах танталовые оксидные конденсаторы, обладающие (конечно, при необходимой емкости) малым полным сопротивлением даже на высоких частотах: здесь танталовый конденсатор емкостью 1 мкФ эквивалентен алюминиевому оксидному конденсатору емкостью примерно 25 мкФ.

При соответствующем выборе микросхемы и сопротивления резисторов Rl, R2 выходное напряжение может быть более 25 В. Емкость конденсаторов С2, СЗ - не менее 25 мкФ.

Схема со ступенчатым включение выходного напряжения

Применение микросхем серии к142ен5 кр142ен5

СН со ступенчатым включением (рис. 2). Функции "коммутирующего" элемента в этом устройстве выполняет транзистор VT1. В момент включения питания начинает заряжаться конденсатор СЗ, поэтому транзистор открыт и шунтирует нижнее плечо делителя RIR2. При этом напряжение на выводе 8 микросхемы DAI близко к 0 (оно равно напряжению насыщения транзистора VT1), и выходное напряжение СН лишь ненамного превышает напряжение Uст. По мере установления выходного напряжения зависит от постоянной времени цепи R3C3. Транзистор закрывается, и перестает шунтировать резистор R2. Напряжение повышается. Назначение конденсаторов С1 и С2 - то же, что и в СН по схеме на рис. 1.

Схема СН повышенной стабильности, напряжение выхода равно напряжению К142 плюс напряжению стабилизации стабилитрона

СН с выходным напряжением повышенной стабильности (рис. 3). Как видно из схемы, отличие этого СН от устройства по схеме на рис. 1 (кроме отсутствия защитных диодов и конденсатора СЗ) заключается в замене резистора R2 стабилитроном VD1. Последний поддерживает более стабильное напряжение на выводе 8 микросхемы DA1 и тем самым дополнительно уменьшает колебания напряжения на нагрузке.

Схема включения микросхем серии к142ен5 кр142ен5

Недостаток устройства - невозможность плавной регулировки выходного напряжения (его можно изменять только подбором стабилитрона VD1).

СН с выходным напряжением, регулируемым от 0 на микросхеме к142ен5

На рис. 4 изображена схема устройства, выходное напряжение которого можно регулировать от 0 до 10 В. Требуемое значение устанавливают переменным резистором R2. При установке его движка в нижнее (по схеме) положение (резистор полностью выведен из цепи) напряжение на выводе 8 DA1 имеет отрицательную полярность и равно разности UVD,-U ых ст <UVD1 - напряжение стабилизации стабилитрона VD1), поэтому выходное напряжение СН равно 0. По мере перемещения движка этого резистора вверх отрицательное напряжение на выводе 8 уменьшается и при некотором его сопротивлении становится равным напряжению UMJXcr При дальнейшем увеличении сопротивления резистора выходное напряжение СН возрастает от 0 до максимального значения.

СН с выходным напряжением, регулируемым от 0 на микросхеме к142ен5

СН с внешними регулирующими транзисторами для увеличения тока

Микросхемы 142ЕН5, 142ЕН8, 142ЕН9 в зависимости от типа могут отдавать в нагрузку ток до 1,5...3 А. Однако эксплуатация их с предельным током нагрузки нежелательна, так как требует применения эффективных теплоотводов (допустимая рабочая температура кристалла ниже, чем у большинства мощных транзисторов). Облегчить режим работы микросхемы в подобных случаях можно, подключить к ней внешний регулирующий транзистор.

Принципиальная схема базового варианта СН с внешним регулирующим транзистором показана на рис. 5. При токе нагрузки до 180... 190 мА падение напряжения на резисторе R1 невелико, и устройство работает так же, как и без транзистора. При большем токе это падение напряжения достигает 0,6...0,7 В, и транзистор VT1 начинает открываться, ограничивая тем самым дальнейшее увеличение тока через микросхему DA1. Она поддерживает выходное напряжение на заданном уровне, как и в типовом включении: при повышении входного напряжения снижается входной ток, а следовательно, и напряжение управляющего сигнала на эмиттерном переходе транзистора VT1, и наоборот.

Применяя такой СН, следует иметь в виду, что минимальная разность напряжений UBX и Uвых должна быть равна сумме минимального падения напряжения на используемой микросхеме и напряжения иэБ регулирующего транзистора. Необходимо также позаботиться об ограничении тока через этот транзистор, так как при замыкании в нагрузке он может превысить ток через микросхему в число раз, равное статическому коэффициенту передачи тока 1*213> и достичь 20 А и даже более. Такого тока в большинстве случаев достаточно для вывода из строя не только регулирующего транзистора, но и нагрузки.

.СН с внешними регулирующими транзисторами.  

Схемы возможных вариантов СН с ограничением тока через регулирующий транзистор показаны на рис. 6-8. В первом из них (рис. 6) эта задача решается включением параллельно эмиттерному переходу транзистора VT1 двух соединенных последовательно диодов VD1, VD2, которые открываются, если ток нагрузки превышает 7 А. С . продолжает работать и при некотором дальнейшем увеличении тока, но как только он достигает 8 А, срабатывает система защиты микросхемы от перегрузки.

Недостаток рассмотренного варианта - сильная зависимость тока срабатывания системы защиты от параметров транзистора и диодов, (ее можно значительно ослабить, если обеспечить тепловой контакт между корпусами этих элементов).

Значительно меньше этот недостаток проявляется в СН по схеме на рис. 7. Если исходить из того, что напряжение на эмиттерном переходе транзистора VT1 и пр мое напряжение диода VD1 примерно одинаковы, то распределение тока ме ду микросхемой DA1 и регулирующим транзистором зависит от отношения значений сопротивления резисторов R2 и RI. При малом выходном токе падение напряжения на резисторе R2 и диоде VD1 мало, поэтому транзистор VT1 закрыт и работает только микросхема. По мере увеличения выходного тока это падение напряжения возрастает, и когда оно достигает 0,6...0,7 В, транзистор начинает открываться, и все большая часть тока начинает течь через него. При этом микросхема поддерживает выходное напряжение на уровне, определяемом ее типом: при увеличении напряжения ее регулирующий элемент закрывается, снижая тем самым протекающий через нее ток, и падение напряжения на цепи R2VD2 уменьшается. В результате падение напряжения на регулирующем транзисторе VT1 возрастает и выходное напряжение понижается. Если же напряжение на выходе СН увеличивается, процесс регулирования протекает в противоположном направлении.

Введение в эмиттерную цепь транзистора VT1 резистора К1, повышающего устойчивость работы СН (он предотвращает его самовозбуждение) требует увеличения входного напряжения. В то же время, чем больше сопротивление этого резистора, тем меньше ток срабатывания по перегрузке зависит от параметров транзистора VT1 и диода VD1. Однако с увеличением сопротивления резистора возрастает рассеиваемая на нем мощность, в результате чего снижается КПД и ухудшается тепловой режим устройства.

В СН по схеме на рис. 8 транзистор VT1 также выполняет функции регулирующего элемента. Сопротивление резистора R1 выбирают таким образом, чтобы он открывался при токе нагрузки около 100 мА. Транзистор VT2 реагирует на изменение (под действием тока нагрузки) падения напряжения на резисторе R2 и открывается, когда оно достигает 0,6...0,7 В, защищая тем самым регулирующий транзистор VT1.

Схемы возможных вариантов СН с ограничением тока через регулирующий транзистор показаны на рис. 6-8. В первом из них (рис. 6) эта задача решается включением параллельно эмиттерному переходу транзистора VT1 двух соединенных последовательно диодов VD1, VD2, которые открываются, если ток нагрузки превышает 7 А. С . продолжает работать и при некото ом дальнейшем увеличении тока, но как только он достигает 8 А, срабатывает система защиты микросхемы от перегрузки.

Недостаток рассмотренного варианта - сильная зависимость тока срабатывания системы защиты от параметров транзистора и диодов, (ее можно значительно ослабить, если обеспечить тепловой контакт между корпусами этих элементов). 142ЕН5В выбирают с таким избытком, чтобы он перекрывал возможные отклонения параметров элементов и напряжения UB3VT(. Если этот запас взять равным 20 %, то ток 1ВЬ|Х будет равен I,2IBVT1, а ток через резистор R1 IRI=0,2IB ут,. Поэтому сопротивление резистора R1 =1)БЭ VTI/0,2IB УТ1 = 13 4 0м.

У рассматриваемого устройства два недостатка. Во-первых, довольно большая рассеиваемая мощность (при максимальном токе входное напряжение должно превосходить выходное на величину, равную сумме минимального падения напряжения на микросхеме и значений напряжения на эмиттерном переходе транзисторов VT1 и VT2). Во-вторых, очень жесткие требования к регулирующему транзистору, который должен выдерживать максимальный ток стабилизатора при большом напряжении Uкэ.

Мощный стабилизатор напряжения на к142ен5 при токе нагрузки 5а, U вых=5-30вольт.

Мощный стабилизатор напряжения на к142ен5 при токе нагрузки 5л, U вых=5-30вольт.

Мощный СН можно выполнить по схеме на рис. 9. Представленный вариант обеспечивает выходное напряжение в пределах 5...30 В при токе нагрузки до 5 А. Кроме микросхемы DA1 и регулирующего транзистора VT1, он содержит измерительный мост, образованный резисторами R2 — R5, R7, и компаратор на ОУ DA2. Особенность моста в том, что через входящий в него резистор R7 протекает большая часть тока нагрузки. Требуемое выходное напряжение устанавливают подстроечным резистором R6, значение тока (в данном случае 5 А), при превышении которого СН становится стабилизатором тока.— резистором R2.

При токе нагрузки, меньшем 5 А, падение напряжения на резисторе R7 таково, что входное напряжение ОУ DA2 больше О, поэтому его выходное напряжение положительно, диод VD1 закрыт и компаратор не оказывает на работу СН никакого влияния. Увеличение тока нагрузки до 5 А и соответствующее повышение падения напряжения на резисторе R7 приводят к тому, что входное напряжение ОУ DA2 вначале уменьшается до 0, а затем меняет знак.
В результате его выходное напряжение также становится отрицательным, диод VD1 и светодиод HL1 открываются и напряжение на выводе 8 микросхемы DA1 устанавливается на уровне, соответствующем току нагрузки 5 А. Свечение светодиода HL1 сигнализирует о том, что устройство перешло в режим стабилизации тока. Колебания сопротивления нагрузки теперь вызывают только изменение выходного напряжения, ток же нагрузки остается неизменным - 5 А.

При восстановлении номинальной нагрузки выходное напряжение возрастает до заданного значения. Дальнейшее уменьшение выходного тока приводит к тому, что входное, а за ним и выходное напряжения ОУ DA2 вновь становятся положительными, диод VD1 закрывается и устройство возвращается в режим стабилизации напряжения.

Вместо К140УД7 в описанном СН (как, впрочем, и во всех последующих), можно использовать ОУ К140УД6, К153УД6, К157УД2 и т. п.

СН с высоким коэффициентом стабилизации.

СН с высоким коэффициентом стабилизации.

Устройство, выполненное по схеме на рис. 10, обеспечивает коэффициент нестабильности напряжения менее 0,001 % в широком интервале температуры и тока наг узки. Повышение точности поддержания выходного напряжения достигнуто введением цепи отрицательной обратной связи, состоящей из измерительного моста Rl- R3VD1, ОУ DA2 и полевого транзистора VT1. Таким образом, напряжение на выводе 8 микросхемы DA1 здесь определяется напряжением стабилизации UVD| стабилитрона VD1 и напряжением рассогласования моста, усиленным ОУ DA2.

Ток через стабилитрон VD1 устанавливают подбором резистора R3. Его сопротивление должно быть таким, чтобы обеспечивался минимальный температурный дрейф напряжения стабилизации.

СН с параллельно включенными микросхемами к142ен5, кр142ен5

Увеличения выходного тока можно добиться не только введением внешнего регулирующего транзистора, но и параллельным соединением микросхем. Например, включив две 142ЕН5А, как показано на рис. 11, можно получить выходной ток до 6 А. Здесь ОУ DA1 сравнивает падения напряжения на резисторах R1 и R2. Его выходное напряжение так воздействует на микросхему DA2, что текущий через нее ток оказывается в точности равным току через DA3. Для предотвращения нежелательного повышения выходного напряжения в отсутствие нагрузки выход устройства нагружен резистором R6.

СН с параллельно включенными микросхемами к142ен5, кр142ен5

Следует отметить, что при максимальном токе нагрузки на резисторах R1 и R2 рассеивается мощность более 2 Вт, поэтому использовать такой СН целесообразно лишь в тех случаях, если нагрузку нельзя разделить на две части (например, на две группы микросхем) с потребляемым током до 3 А и питать каждую из них от отдельного СН.

Двуполярный СН на основе однополярной микросхемы к142ен-к142ен8

Двуполярный СН на основе однополярной микросхемы можно выполнить по схеме, изображенной на рис. 12. Как видно, микросхема DA1 включена по типовой схеме в плюсовое плечо СН. Минусовое плечо содержит делитель напряжения из резисторов одинакового сопротивления Rl, R2, инвертирующий усилитель на ОУ DA2 и регулирующий транзистор VT1. ОУ сравнивает выходное напряжение плеч по абсолютной величине, усиливает сигнал ошибки и подает его в цепь базы транзистора VT1.

Двуполярный СН на основе однополярной микросхемы к142ен-к142ен8

Если напряжение минусового плеча по какой-либо причине становится меньше, чем плюсового (по абсолютной величине), напряжение на инвертирующем входе ОУ DA1 становится больше О, и его выходное напряжение понижается, открывая регулирующий транзистор VT1 в большей мере и, тем самым, компенсируя снижение напряжения минусового плеча. Если же это напряжение, наоборот, возрастает, процесс протекает в противоположном направлении и равенство выходных напряжений также восстанавливается.

Стабилизатор с регулируемым выходным напряжением с применение ОУ

СН с регулируемым выходным напряжением можно собрать по схеме на рис. 13. Здесь ОУ DA2 выполняет функции повторителя напряжения, снимаемого с движка переменного резистора R2. ОУ питается нестабилизированным напряжением, но на его выходной сигнал это практически не влияет, так как напряжение смещения нуля не превышает нескольких милливольт. Благодаря большому входному сопротивлению ОУ становится возможным увеличить сопротивление делителя R1R2 в десятки раз (по сравнению с СН с типовым включением микросхемы DA1) и, тем самым, значительно уменьшить потребляемый им ток.

Стабилизатор с регулируемым выходным напряжением с применение ОУ

Введение в цепь обратной связи СН усилителя на ОУ DA2 (рис. 14) позволяет снизить коэффициенты нестабильности Ки и К,. Коэффициент усиления усилителя определяется сопротивлением резисторов делителя R3R4 и при указанных на схеме номиналах равен 10. Требуемое выходное напряжение устанавливают переменным резистором R2.

Стабилизатор с регулируемым выходным напряжением с применение ОУ

Импульсные стабилизаторы напряжения на основе К142ен5 (с непрерывным регулированием)

 

Читать далее про стабилизатор К142ЕН6, КР140ЕН6...

  По материалам журнала радио.

Полезные ссылки

Читать про стабилизаторы серии к142, к1114, к1145, к1168, 286

На предыдущую страницу  На главную страницу  На следующую страницу